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Abstract Dense blue mussel assemblages are unsta-

ble, their structure changing from year to year. Three

types of models can be used to describe this instability:

(1) ‘‘exogenous’’ model based on regional temperature

fluctuations, (2) ‘‘endogenous’’ deterministic model

associated with negative impact of adult mussels on

juveniles and (3) ‘‘density-linked stochasticity’’ model

based on positive feedbacks resulting in overcrowding

and destabilizing the settlement. We compared pre-

dictions deduced from these models with a time series

based on the results of long-term (18 years)

monitoring of abundance and demographic structure

of three mussel beds at the White Sea. Most of our

findings agreed well with the predictions deduced

from the endogenous model. In particular, (1) long-

term changes in mussel abundance and demographic

structure were strictly cyclic, with non-matching

periods (5–9 years) at different sites; (2) stages with

the dominance of old mussels alternated with those

where juveniles dominated and (3) some signals of

delayed density dependence were revealed. However,

the time series also contained elements of long-term

trends, which may testify to the involvement of some

exogenous factors (probably long-term climate

changes).

Keywords Mytilus � Mussel beds � Population

dynamics � Long-term changes

Introduction

Long-term monitoring data on marine ecosystems

present a challenge for researchers trying to explain

and forecast changes in populations and communities.

Models emulating the dynamics of ecological systems

are the distillation of our knowledge in this respect as

well as an indispensable forecasting tool. While

researchers studying plankton have already made

headway in the construction of dynamic models

(Franks, 2002), similar studies of benthic systems
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are just starting. A key to a successful development of

a model is the choice of suitable objects, which should

show clear structural and dynamical patterns and be

easy to study. Communities associated with dense

assemblages of ecosystem engineers such as marine

shallow-water bivalves are the best candidates for this

role.

Dense assemblages of blue mussels (Mytilus edulis

L., M. trossulus Gould, and other related species) are a

strong presence in marine shallow-water bottom

communities (Buschbaum et al., 2009). These sessile

bivalves are influential ecosystem engineers, and

changes in their populations may be crucial for

numerous associated species (Khaitov, 2013). Mussel

assemblages are unstable systems, that is, their

population structure (McGrorty et al., 1990; Khaitov,

2013), abundance (Beukema et al., 2010), recruitment

(Beukema & Dekker, 2014) and cover (Wootton &

Forester, 2013) may change dramatically from year to

year.

In general, temporal fluctuations in natural popu-

lations can be explained by an exogenous regulation,

an endogenous regulation or a combination of the two

(Berryman, 1989). Correspondingly, three types of

models can be developed. (1) Purely exogenous, or

stochastic, models are usually proposed if there is a

strong correlation between population parameters and

some external factor or factors. The correlation

between population parameters and sunspots cycles

or hydrologic cycles is a famous example (Gray &

Christie, 1983). To note, calling a factor ‘‘exogenous’’

or ‘‘external’’, we mean that there is no feedback to it

in the population (Berryman, 1989). (2) Purely

endogenous, or deterministic, models apply if there

are internal regulatory mechanisms (positive or neg-

ative feedbacks). These models usually predict a

strongly specific pattern of the population time series

(e.g. population cycles). By the same token, if such a

pattern is found, there are good reasons to consider an

endogenous model for the system. (3) The models of

the third type apply if external stochastic impacts are

effective only when, owing to some intra-population

processes, the population parameters achieve critical

values (see Wootton & Forester, 2013 and examples

therein).

In this paper, we consider those models of these

three types that have been specially developed for

long-term dynamics of Mytilus populations on the

basis of long-term monitoring. It should be noted that

numerous models of this kind have been extensively

used for land ecosystems (Berryman, 1996; Ginzburg

& Taneyhill, 1994 and references therein) and some of

them might be applicable to mussels. Such an

extrapolation, however, was outside the scope of our

study.

Within the ‘‘exogenous’’ approach, the instability

of mussel populations has been explained as a

consequence of climate changes. In particular, the

role of regional temperature was highlighted during

long-term monitoring of intertidal mussel populations

in the Wadden Sea (Beukema & Dekker, 2014), where

mussel recruitment success was shown to be closely

correlated with temperature fluctuations.

The ‘‘endogenous’’ approach to mussel population

dynamics focuses on the role of density-dependent

regulatory processes, that is, negative feedbacks.

There is ample evidence of a negative correlation

between adults and juveniles in dense mussel assem-

blages (Okamura, 1986; Lehane & Davenport, 2004;

Khaitov, 2013). Since the negative influence of adult

animals upon conspecific juveniles leads to endoge-

nous population instability (Claessen et al., 2004), the

population will change even without any external

influence.

Instability based on negative interactions within a

population often manifests itself in population cycles

(Claessen et al., 2004). Such cycles have been

revealed in populations of the zebra mussel Dreissena

polymorpha (Strayer & Malcom, 2006), the freshwater

counterpart of Mytilus. Mathematical models based on

negative adult–juvenile interactions in D. polymorpha

predict regular endogenous cyclic changes in abun-

dance and demographic structure (Maclsaac et al.,

1991; Strayer & Malcom, 2006; Casagrandi et al.,

2007). A model, which is very similar to that of

Casagrandi et al. (2007), has been independently

developed for Mytilus edulis populations in the White

Sea (Lukanin et al., 1986; Naumov, 2006). It is also

based on the negative influence of adult mussels upon

juveniles and predicts cyclic patterns in long-term

changes in abundance and age/size structure of local

mussel settlements. To note, the models by Casagrandi

et al. (2007) and Naumov (2006) can be considered as

particular cases within the framework of the demo-

graphic theory for an open population with space-

limited recruitment (Roughgarden et al., 1985).

According to the ‘‘endogenous’’ model (in the

version of Lukanin et al., 1986; Naumov, 2006),
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mussel demographic structure should change in a

cyclic fashion, with several distinct types of size/age

composition substituting each other in the course of

time (Fig. 1). To begin with, adult mussels strongly

inhibit recruitment. This negative impact could be

direct (through filtering out of larvae) or indirect

(through organic pollution of the biotope by faecal and

pseudo-faecal pellets produced by adults). The recruit-

ment can occur only after most or all old molluscs die.

Then the population is dominated by young small

mussels (Stage 1: unimodal size/age distribution with

small sizes/ages as modal classes; Fig. 1). As mussels

grow, the intensity of the negative influence upon

recruits increases, recruitment stops and the popula-

tion starts to be dominated by middle-aged individuals

(Stage 2: unimodal size/age distribution with meddle

sizes/ages as modal classes; Fig. 1). At Stage 3

(Fig. 1), the population is dominated by old large

mussels, which still inhibit recruitment. After that two

scenarios are possible. If larval supply is high, the

recruitment starts when most (but, importantly, not all)

old mussels die, leading to the bimodal size/age

distribution (Stage 4-a; Fig. 1). If larval supply is

weak (for example, in areas with slow water currents),

the settlement may be expected to dwindle or collapse

(Stage 4-b; Fig. 1). It remains to be said that this

‘‘cyclic’’ model, though well developed theoretically

(Naumov, 2006; Casagrandi et al., 2007), has never

been tested ‘‘in action’’ so far.

The model of the third type, referred to as ‘‘density-

linked stochasticity’’ (DLS), was developed for

Mytilus californianus, which forms dense assemblages

on exposed rocks (Wootton & Forester, 2013). DLS

model, contrary to the previous one, is based on

positive interactions between old mussels and juve-

niles. This positive feedback leads to an increase of

population density up to the point when most mussels

are attached to each other rather than to the primary

rock surface. When the population reaches this critical

stage, stochastic exogenous forces (e.g. wave impact)

come into play destroying the settlement. Thus, this

model takes into account the effects of random

environmental impacts superimposed upon the deter-

ministic skeleton of population changes.

In spite of the long history of mussel population

monitoring (Wootton & Forester, 2013; Beukema &

Dekker, 2014), no attempts have been made to

compare the predictions of the different models with

the behaviour of time series observed. This study

aimed to fill this gap by testing predictions that could

be deduced from the purely exogenous, purely

endogenous and DLS approaches.

The predictions deduced from the ‘‘exogenous’’

model were based on the assumption about the key

disappearance
of settlement
disappearance
of settlement
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Fig. 1 Scheme of long-

term dynamics of mussel

size/age structure according

to the ‘‘endogenous’’ model

(after Lukanin et al., 1986).

L mussel size or age,

N abundance
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role of the regional temperature (or, more precisely,

the key role of climatic factors associated with

regional temperature) in driving long-term changes

in mussel populations (Beukema et al., 2001; Beu-

kema & Dekker, 2014). The role of climatic factors is

expected to be even higher for intertidal mussel beds in

the Arctic, where disturbances associated with ice

impact (Naumov, 2013) and the availability of plank-

tonic primary producers mussels feed on (Leu et al.,

2011) strongly depend on regional temperature.

So, the predictions deduced from the ‘‘exogenous’’

model (we will consider them as hypotheses to be

tested) were as follows. Since all mussel beds are

influenced by the same climatic factors, the long-term

changes in the abundance and size structure should be

coordinated in the neighbouring mussel beds (Exo1).

Long-term changes in the abundance and size struc-

ture of mussel populations should show some corre-

spondence with the long-term changes in the regional

temperature (Exo2).

The predictions deduced from the ‘‘endogenous’’,

deterministic model (Naumov, 2006; Casagrandi et al.,

2007) were as follows. Since changes regulated by

biotic interactions act at a small spatial scale (Zajac

et al., 1998), they should be independent (that is, non-

coordinated) in spatially distant mussel beds (Endo1).

The time series should be stationary, i.e. population

parameters should fluctuate around an invariable

equilibrium value (Endo2), as this is the main

assumption for models based on density-dependent

regulation (Turchin & Taylor, 1992). Regular cycles

should be present in the dynamics of abundance and

size structure of any given mussel population (Endo3),

since it is the only possible pattern of changes predicted

by this model (Naumov, 2006; Casagrandi et al., 2007).

The patterns of inter-annual changes in the size

structure of a mussel bed should be similar to those

presented in Fig. 1: long-term dynamics of mussel

beds could be described as the cyclic interchanges of

stages with small mussels as dominants followed by

stages dominated by large mussels (Endo4). Since the

endogenous model is based on density-dependent

regulation, the density dependence could be revealed

in analysis of structure of the time series (Endo5).

Finally, we deduced one general prediction from

the DLS model. This model forecasts a very special

pattern of changes in mussel abundance: a sharp drop

followed by a steady increase followed by another

sharp drop and so on (Wootton & Forester, 2013).

Thus, the strongest changes in abundance should occur

after periods of population density peaks (DLS).

In this study, we compare these predictions with

data on abundance and demographic structure

(assessed as the composition of different size classes)

of mussel populations collected annually for 18 years

at three mussel beds located in a small fjord-like bay at

the White Sea.

Materials and methods

Collection design

The study was conducted in the Voronya Bay (Kan-

dalaksha Bay, White Sea, Fig. 2), where 3 mussel beds

(denoted as Vor2, Vor4 and Vor5) were monitored

annually. The mussel beds had a very small area (less

than 0.5 ha), which is typical of permanent mussel

beds at the intertidal of the White Sea. The detailed

description of the study area and the sampling

procedure can be found in our previous work (Khaitov,

2013). Briefly, the sampling procedure was as follows.

Six samples placed inside haphazardly chosen mussel

patches were taken at each of the three beds between

August 1 and August 15 annually in 1996–2013 (in

1996, 5 samples were taken at each bed; in 1998, Vor5

was not sampled and only 5 samples were taken at

Vor4). A round core with an area of 55 cm2 was

thrown at random onto the mussel bed. The same

person (V.Kh.) made all the collections, so we can be

fairly sure that the sampling was carried out in a

uniform way throughout the study period. If a

randomly thrown core landed on a mussel-free area,

the nearest mussel patch was sampled. The samples

were washed through a sieve with a 0.5-mm mesh, all

the mussels were picked out and their length was

measured using a calliper or a stereo-microscope (with

ocular micrometer) to the nearest 1 mm. The validity

of this sampling design is discussed in the electronic

supplement (Appendix 1 in Supplementary material).

Quantitative data representation

To assess the mussel population structure, we used two

types of quantitative data: univariate and multivariate.

The mussel size scale was divided into 6 classes (with

a 10 mm step) and the abundance of mussels of each

class in each sample was calculated. In this way, the
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Voronya bay

Arkhangelsk
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Belaya bay
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Fig. 2 Voronya Bay and the positions of the three mussel beds under study
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Size-Class Abundance Matrix (SCAM, see Khaitov,

2013) was constructed: it contained 6 variables (size

classes) and 314 samples. So, SCAM is the multivari-

ate representation mussel size structure in each

sample. The sum of all variables for each sample in

SCAM represents the total mussel abundance in each

sample. The average total abundance was also calcu-

lated for each mussel bed in each year. The total

abundance (and annually averaged one) was consid-

ered as univariate datasets describing mussel popula-

tion. For all statistical procedures (see bellow), the

total mussel abundances and elements of SCAM were

log-transformed (ln(N ? 1)). This transformation is

needed to meet the assumptions in regression (Zuur

et al., 2009) and in distance-based multivariate

analysis (Clarke & Gorley, 2006).

On the basis of SCAM, the Average Size-Class

Abundance Matrices (ASCAM) were calculated sep-

arately for each mussel bed. Each ASCAM contained

the mean abundances of mussels from different size

classes in a particular bed in a given year. Years were

considered as samples and size classes as variables in

the ASCAM. Each sample in ASCAM describes the

mussel size structure at particular mussel bed in given

year. Thus, ASCAMs were considered as multivariate

datasets describing averaged mussel size structure. For

all followed statistical procedures elements of

ASCAM were log-transformed.

Data on averaged monthly air temperature were

extracted from the annual reports of the Kandalaksha

nature reserve (‘‘The Chronicle of Nature of the

Kandalaksha Reserve’’) for 1995–2000 and from the

archives stored in the Internet site http://www.rp5.ru

(2001–2013) for Kandalaksha weather station (WMO

station index 22217; 18 km from the Voronya Bay).

The averaged monthly temperature matrix (AMT

matrix) was constructed, where months were treated as

variables and years as samples. To note, the AMT

matrix contained temperatures for January–August of

the calendar year of sampling and for September–

December of the previous calendar year. In this way,

an AMT matrix represented a temperature during

mussel ‘‘biological’’ year (see above). The AMT

matrix was used as a multivariate and annually aver-

aged temperature as a univariate characteristic of the

temperature conditions in the region in different years.

In several further analyses, we transformed our

initial data (multivariate and univariate) into form of

matrices of Euclidian Distances between pairs of time

points (years). The calculation of these matrices is

discussed in detail in electronic supplement (Ap-

pendix 1 in Supplementary material). In sum, we

calculated two types of matrices: Euclidean Distances

Multivariate (EDM) and Euclidean Distances Uni-

variate (EDU) matrices. EDM is the usual triangular

matrix containing Euclidean Distances between pairs

of years, calculated on the basis of Multivariate

datasets. EDM was calculated for each mussel bed

separately on the basis of elements of their ASCAM.

EDU is a matrix of the same type as EDM but

calculated on the basis of only singular, univariate

variable. Additionally, we calculated EDM and EDU

on the basis of temperature data.

Mathematical formulation of deduced predictions

and statistical approaches to test them

Prediction Exo1

If the parameters of changes in mussel beds are

strongly coordinated, then (1), in the case of the

univariate dataset, the general additive regression

model (GAM) containing only one smoother, common

for all mussel beds, should be better than the

regression model containing three different smoothers

calculated for each particular mussel bed; (2), in the

case of multivariate dataset, no significant interactions

between factors ‘‘Site’’ and ‘‘Year’’ should be found in

two-factor PERMANOVA. Otherwise the prediction

Endo1 would be confirmed.

To test this prediction for univariate dataset (total

mussel abundance in each sample), we calculated the

parameters of two GAM (Zuur et al., 2009):

GAM1 : Lij ¼ b0 þ fcom Yearið Þ þ b1Site þ eij

ð1Þ

GAM2 : Lij

¼ b0 þ f1 Yeari in Vor2ð Þ
þ f2 Yeari in Vor4ð Þ þ f3 Yeari in Vor5ð Þ
þ b1Site þ eij:

ð2Þ

Here Lij is the log-transformed total mussel abundance

in sample j in year i, b0 is the intercept, b1 slope

coefficient for Site, as factor, fcom is the common

smoother for all sites, f1, f2, f3 is the smoothers for each

particular mussel bed, e is the residuals. These two
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models were compared using the Akaike information

criterion (AIC). If Exo1 is correct, the AIC for GAM1

should be lower than AIC for GAM2, i.e. the first

regression model should be better. R-statistical envi-

ronment version 2.15.0 (R Development Core Team,

2012) was used for these and all the following

statistical calculations (if not indicated otherwise).

For the GAM calculations, above ‘‘gam()’’ function

from package ‘‘mgcv’’ was used.

Two-factor PERMANOVA (Anderson, 2005) was

performed with ‘‘Site’’ (3 levels: Vor2, Vor4, Vor5)

and ‘‘Year’’ (16 levels; to balance the complex, the

data of 1998, when Vor5 was not sampled, were

excluded; the data of 1996, when only 5 samples were

taken at each bed, were also excluded) as fixed

orthogonal factors. As a dependent dataset we used

log-transformed elements of SCAM (Euclidean Dis-

tance was used as dissimilarity metric). The function

‘‘adonis()’’ from the package ‘‘vegan’’ was used for the

above analysis. The homogeneity of dispersion was

checked by PERMDISP software (Anderson, 2001)

before the PERMANOVA analysis.

Prediction Exo2

If mussel population parameters depend on regional

temperature, then there should be some congruence

between the two time series.

To test this association, cross-correlation anal-

ysis between the mean total abundance time series

and the time series reflecting the annually averaged

temperature was performed. The temperature was

lagged back (negative lags) in relation to mussel

abundance and for each lag, the correlation coef-

ficients were calculated. The significance of corre-

lation coefficients was assessed by Bartlett’s

criterion 2=
ffiffiffi

n
p

, where n is the length of the time

series. It should be noted that significant correlations

revealed in the cross-correlation analysis are not true

correlations between mussel abundance and temper-

ature. Rather, they indicate some congruence in the

dynamics of these two parameters. This congruence,

predicted by Exo2, may be obscure due to weak

associations and strong noise in the time series.

Therefore, in order not to miss any possible signals

of congruence, we took into account all correlations

that meet Bartlett’s criterion, even low ones. The

function ‘‘ccf()’’ from the package ‘‘stats’’ was used

for the calculations.

To analyse the association between regional tem-

perature and the size structure of a mussel bed, we

used Mantel correlation approach (Clarke & Gorley,

2006; Legendre & Legendre, 2012). For the analysis,

we used EDM matrices calculated on the basis of both

temperature data and ASCAM. These Euclidean

distance matrices were then compared to test the

match between them using Mantel correlation. Spear-

man’s rank correlation coefficient was used as a

statistic in the procedure with the permutation test for

significance assessment (here and in the following

analyses 999 permutations were run). The function

‘‘mantel()’’ from the package ‘‘vegan’’ was used.

Prediction Endo1

If changes in the population parameters of different

mussel beds are non-coordinated, then (1), for uni-

variate dataset, AIC for GAM2 should be smaller than

AIC for GAM1, i.e. the regression model containing

only smoothers calculated for each mussel bed sepa-

rately should be better than the regression model

including common for all mussel beds pattern of

changes; (2), for multivariate dataset, significant

interaction between factors ‘‘Year’’ and ‘‘Site’’ should

be revealed in two-factor PERMANOVA. The test of

this prediction was described earlier (Exo1).

Prediction Endo2

If the time series is stationary, then no significant trend

in population parameters (either abundance or size

structure) should be present.

To reveal the presence of trends, if any, in both

univariate and multivariate time series, we used a

‘‘model matrix’’ approach (Clarke & Gorley, 2006;

Legendre & Legendre, 2012). This technique, proven

to be effective in the analysis of the spatial data series

(Clarke & Warwick, 2001; Borcard & Legendre,

2012), is applicable to the time series as well (Clarke

& Warwick, 2001; Clarke & Gorley, 2006).

We constructed the gradient matrix as the Eucli-

dean distance matrix between 18 successive time

points as described in Clarke & Gorley (2006). Then

EDU and EDM matrices computed for each mussel

bed were compared with the gradient model matrix by

Mantel correlation. If the analysis revealed significant

results, it was considered as an evidence of the
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presence of a trend in a particular time series. This

analysis was also applied to EDU and EDM matrices

calculated for temperature data.

Prediction Endo3

If regular cyclic components are present in the

dynamics of abundance and size structure, the con-

gruence between time series (univariate or multivari-

ate) and periodic cos-like or sin-like function should

be found.

We used, again, the ‘‘model matrix technique’’ to test

this prediction but cyclic matrices instead gradient ones

were constructed. The general procedure of cyclic

matrix calculation was described in detail by Clarke and

Gorley (2006). The algorithm used in our investigation

is given in the electronic supplement (Appendix 1 in

Supplementary material). Shortly, the cyclic matrices

are the matrices of Euclidean distances between points

evenly distributed around a circle with some period. We

constructed 16 cyclic matrices for the periods of

3–18 years. After the matrices were constructed, the

Mantel correlation was used to compare each cyclic

matrix with EDU and EDM matrices representing inter-

annual variations of population parameters. However,

since some trends could be found in both univariate and

multivariate time series, we used the partial Mantel

correlations (Legendre & Legendre, 2012) with gradient

matrix (see above) as covariate. The same analysis was

applied to EDU and EDM matrices based on temper-

ature data to reveal cyclic components in the long-term

temperature dynamics.

The results of the analysis described could be

presented as a periodogram (the period of cyclic matrix

as the abscissa and the partial Mantel correlation as the

ordinate). The significance of the partial Mantel

correlation was assessed by permutation procedure as

described in Legendre & Legendre (2012). If permu-

tation test revealed a significant match between the

EDU or EDM matrix with the cyclic matrix of

particular period, it was considered as an evidence of

the presence of the cyclic component with the corre-

sponding oscillation period. We considered results as

significant at both P\ 0.05 and P\ 0.1.

Prediction Endo4

If the endogenous model is appropriate for the

observed time series, then the size structure of

mussel beds should demonstrate a corresponding

temporal sequence of size structures. Unimodal size-

frequency distribution with small mussels as dom-

inants should change over to unimodal distribution

with large mussels as dominants. The latter size

structure should change over to bimodal size distri-

bution. The latter should change over to the uni-

modal distribution with small mussels as dominants.

So, the phase portrait of the system should look like a

set of loops, with the points moving between the

stages described above.

To test this prediction, we used EDMs reflecting

inter-annual variation in size structure of each mussel

beds for non-metric multidimensional scaling (nMDS)

ordination performed for all mussel beds separately, so

that a long-term trajectory in their size structure

dynamics could be visualized. We considered the size

structure of mussel beds at extreme positions of the

nMDS ordination.

Prediction Endo5

If the observed time series are based on density-

dependent negative feedbacks, as predicted by the

deterministic model, then the Partial Rate Correlation

Function (PRCF, Berryman & Turchin, 2001) should

include several non-zero components.

PRCF analysis was performed according to the

recommendations of Berryman & Turchin (2001).

Before the analysis, all total mussel abundance

time series were detrended by subtracting the linear

regression line (Legendre & Legendre, 2012). The

algorithm of the subsequent analysis is described in

the electronic supplement (Appendix 1 in Supple-

mentary material). Briefly, PRCF provides infor-

mation on the dependence of the rate of changes in

mussel abundance in time t on the abundance of

mussels in time t–d. High and significant negative

PRCF values denote a decreased rate of changes as

a response to a high abundance of mussels in

the previous time (negative feedback). Positive

values, if any, denote increased population growth

as a response to a high abundance (positive

feedback).

The significance of the PRCF values were assessed

by Bartlett’s criterion 2=
ffiffiffi

n
p

ð Þ, where n is the length of

the time series (Berryman & Turchin, 2001). Addi-

tionally, we assessed the 99% confidence intervals for
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each PRCF values using bootstrapping of time series

(999 bootstrap replicates). The bootstrapping of time

series was performed by function ‘‘tsboot()’’ from the

package ‘‘boot’’. We consider the PRCF values as

significant if zero value was not included into the

confidence intervals.

Prediction DLS

If the strongest changes in population parameters

are associated with the periods following the

population density peaks, then Lt (log-transformed

population density in time t) being regressed versus

Lt-1 (log-transformed population density in the

previous time period) should demonstrate a highly

heteroscedastic pattern (Wootton & Forester,

2013).

To test this prediction, we fitted the linear regres-

sion Lt = b0 ? b1Lt-1 ? e (for each mussel bed

separately) and assessed it for the homogeneity of

dispersion using Breusch–Pagan test. The test was

performed by function ‘‘bptest()’’ from the package

‘‘lmtest’’.

Results

The test for the predictions of Exo1 and Endo1

The mean total mussel abundance varied broadly

from year to year and between sites (Fig. 3B–D). The

AIC for GAM1 was greater than that for GAM2

(393.1 and 303.2 correspondingly). This means that

GAM2 is a better regression model. It predicts

different tendencies in long-term changes for differ-

ent mussel beds and, hence, there is no obvious

tendency common for all the three mussel beds. All

the smoothers fitted by GAM2 were significant

(F = 19.7; P\ 0.001 for Vor2; F = 10.2; P\
0.001 for Vor4; F = 3.1; P = 0.0054 for Vor5) and

in a good agreement with the changes in mean total

abundance (Fig. 3).

In the case of size structure dynamics (multivariate

case), the interaction between factors Year and Site was

significant (PERMANOVA, pseudoFYear*Site = 12.67,

P\ 0.001). Hence, long-term changes in size structure

did not show any pattern of long-term changes common

for all mussel beds (see also electronic supplement,

Appendix 2).

The test for the prediction of Exo2

The average annual temperature followed a clear up-

and-down pattern (Fig. 3A), with minimums in 1996,

1998, 2003, 2007, 2010–2011 and 2013 and maxi-

mums in 1997, 2000 2001, 2006, 2008 and 2012. A

significant positive cross-correlation between the

mussel abundance and the average annual temperature

in the same year (that is, with a zero lag) was observed

only in the case of Vor2 (Table 1). However, three

significant positive cross-correlations with negative

lags were found for two mussel beds: -1 and-4 years

for Vor2 and -3 years for Vor5. The highest (though

marginally significant; r = 0.448) positive correlation

at Vor4 was also associated with the lag of -3 years.

Mantel correlations between multivariate Eucli-

dean distance (EDM) matrices calculated on the basis

of temperature data (AMT matrix) and ASCAMs were

not significant for all the mussel beds (q = 0.12;

q = 0.01; q = 0.06 for Vor2, Vor4 and Vor5 respec-

tively; P[ 0.1 in all cases). Hence, there were no

clear correspondence between the patterns of temper-

ature dynamics and those of size structure dynamics.

The test for the prediction of Endo2

The Mantel correlations between univariate Euclidean

distance (EDU) matrices and gradient matrix were

significant only in the case of annual mean tempera-

ture (q = 0.28; P = 0.013) and total mussel abun-

dance at Vor2 (q = 0.59; P\ 0.001). The same

analysis in the case of multivariate Euclidean distance

matrices (EDM) revealed significant matches with

gradient matrix for all the mussel beds (q = 0.61,

P\ 0.001 for Vor2; q = 0.22, P = 0.022 for Vor4;

q = 0.40, P = 0.002 for Vor5). However, no matches

with gradient matrix were revealed for EDM matrix

describing variations in temperature (q = 0.12,

P = 0.114).

Thus, some elements of trends were found in all the

parameters involved in the analysis, both those related

to mussel beds and those related to the regional

temperature.

The test for the prediction of Endo3

Periodogramms based on partial Mantel correlations

between univariate Euclidian distance matrices (EDU)

and cyclic matrices (Fig. 4) were sufficiently close to
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those calculated on the basis of multivariate Euclidean

distance matrices (EDM). The temperature time series

(univariate as well as multivariate) clearly signalled

the presence of a cyclic component with a period of

4 years. In the case of multivariate time series of Vor2

(i.e. the long-term changes in size structure), a high,

though marginally significant (0.05\P\ 0.1),

Mantel correlation was found for comparison of

EDM with the cyclic matrix with a period of 9 years.

Univariate time series (i.e. total mussel abundance

dynamics) for Vor4 signalled the presence of cyclic

components with a period of 5–6 years. In the case of

Vor5, both EDM (size structure) and EDU (total

abundance) showed the presence of some cyclic

components with a period of 7–9 years. A weak,

marginally significant signal of the presence of a

4-year cycle was revealed in the case of the univariate

time series at Vor5.

The test for the prediction of Endo4

The size structure varied clearly from year to year in

all the beds (Fig. 5), the trajectory of point movement

being obviously different in all the cases. At the same

time, several features of the size structure dynamics

were common for all the mussel beds. Firstly, the
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Fig. 3 Long-term changes

in A annually averaged

regional temperature; B–

D total mussel abundance

(mean ± SE). The dotted

lines represent the values

predicted by GAM2 (see

text for details)

Table 1 Results of cross-correlation analysis of dependence

between mussel abundance and average annual temperature

Lag Vor2 Vor4 Vor5

0 0.475 -0.072 0.009

-1 0.529 -0.184 0.008

-2 0.373 0.226 0.284

-3 0.377 0.448 0.535

-4 0.490 0.21 0.394

-5 0.185 0.115 0.047

-6 -0.132 0.172 0.004

-7 0.037 0.081 0.282

-8 0.134 0.124 0.314

-9 0.156 -0.073 -0.254

Significant correlations are shown in bold
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cyclic character of the size–structure changes was

noticeable in all the cases, being reflected in the

loops of the trajectory of point movement. Sec-

ondly, all the mussel beds showed, at different

times, three similar types of size-frequency distri-

butions: (1) unimodal distribution with the domi-

nance of large mussels and the lack of small ones

(e.g. Vor2 in 1998; Vor4 in 1999; Vor5 in 1999), (2)

virtually unimodal distribution with the dominance

of small mussels and the lack of large ones (e.g.

Vor2 in 2009; Vor4 in 2011; Vor5 in 2008) and (3)

bimodal distribution, with small and large mussels

as co-dominants (e.g. Vor2 in 2006; Vor4 in 2001;

Vor5 in 2006). The size-frequency histograms for
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each mussel bed in all the years are given in the

electronic supplement (Appendix 2 in Supplemen-

tary material).

The test for the prediction of Endo5

Significant negative values of PRCF[1] were found for

all the mussel beds (Fig. 6). Some other PRCF values

were close to the significance threshold: PRCF[2] and

PRCF[3] for Vor2, PRCF[2] and PRCF[4] for Vor4

and PRCF[2] for Vor5. The bootstrapped 99% confi-

dence intervals calculated for these values do not

include zero.

The test for the prediction of DLS

The relationship between mussel abundance in a given

year (Lt) and the abundance in the previous year (Lt-1)
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Fig. 5 nMDS ordination reflecting the changes in mussel size

structure at different mussel beds. AVor2, BVor4, CVor5 (note

that the point corresponding to Vor5 in 1998 is absent on the

diagram). Black circles mark the points in polar (minimal or

maximal) positions according to the correspondent nMDS axis.

Histograms on the margins of nMDS chart reflect the size-

frequency distribution in the mussel population during the

stages marked by filled circles
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did not show any traits of heteroscedasticity (Breusch–

Pagan test, P[ 0.1 in the case of all the three mussel

beds investigated). Hence, no strong changes in the

years following the periods of the highest mussel

abundance were observed.

Discussion

The mussel beds in our study were unstable systems,

demonstrating significant inter-annual variations in

abundance and demographic structure. Having anal-

ysed the time series of the mussel population param-

eters, we found that (1) changes in different mussel

beds were not coordinated, the oscillation patterns

being different at different sites. (2) There were no

clear direct correlations between the mussel bed

parameters (abundance and size structure) and the

regional temperature. (3) However, the abundance and

the regional temperature showed a positive correlation

with a time lag of -1, -3 and -4 years. (4) All the

time series had some manifestations of long-term
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trends. (5) However, detrending exposed the presence

of a regular cyclic component in each of them. (6)

These cyclic components had different periods in all

the time series. (7) The demographic structure (ex-

pressed as size-frequency distribution) was repre-

sented by a succession of three typical stages: the

unimodal distribution with the dominance of large

mussels, the unimodal distribution with the dominance

of small mussels and the bimodal distribution, with

small and large mussels as co-dominants. (8) As

shown by PRCF analysis, all mussel beds demon-

strated a direct density dependence (with a lag of

1 year), which is trivial, since the time series were

detrended before the analysis; but there was also some

evidence of delayed density dependence (with lags of

2 and more years). (9) The strongest changes in the

total abundance were not associated with the periods

of the highest abundance.

These findings are now to be compared with the

predictions of the ‘‘exogenous’’, the ‘‘endogenous’’
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and the ‘‘density-linked stochasticity’’ model (see

‘‘Introduction’’ section).

(1) The density-linked stochasticity model (DLS)

seems to be the less applicable in our case. This

model, developed for mussel populations on

exposed rocks (Wootton & Forester, 2013), is

conceptually based on the positive interaction

between adults and juveniles. This positive

interaction stems from the fact that old mussel

facilitates recruitment: juveniles attach their

byssus threads to shells more readily than to any

other surface (Commito et al., 2014). According

to the DLS model, this positive feedback

inevitably leads to an increase in abundance

and at some moment recruits have to attach

themselves exclusively to the shells of older

mussels, all the primary hard substrate being

occupied. The resulting multilayered assem-

blages may be easily dislodged by stochasti-

cally occurring large waves. Thus, mussel

populations are prone to collapses after periods

of the highest abundance.

Our findings, especially finding #9, do not agree

with the DLS prediction. The strongest changes were

not associated with the periods of the highest abun-

dance. These contradictions may be due to the fact that

the mussel beds in our study were situated in sheltered

areas with a weak wave impact. Under these condi-

tions, nothing prevents mussel assemblages from

becoming multilayered structures and when a certain

density level is reached some negative feedbacks (see

below) become important. Conversely, in an environ-

ment where gales are frequent, mussels are unlikely to

achieve this critical density level.

It cannot be entirely ruled out that we failed to

recognize some indications of DLS because of the

sampling design. To remind, we sampled only mussel

patches, avoiding gaps. If a gap in a local area of a

mussel bed was created by a stochastic impact at a

time t, it could not be compared with the abundance in

this local area in the previous year (t - 1).

However, mussel beds in our study were very small.

Each of them might be expected to respond to a

stochastic impact as a whole. In such a case, DLS

model should predict the changes in the abundance of

all the mussels at local mussel beds. If, which is

unlikely, different parts of a small mussel bed respond

to a stochastic impact differently, DLS model would

describe changes in these small parts rather than those

in a whole population. In that case, DLS model can be

considered as a model of gap formation but not as a

model of population dynamics.

(2) At first glance, our findings do not agree with the

exogenous model, either, at least, the one based

on regional temperature (see Introduction). In

particular, findings #1 and #2 clearly disagree

with predictions Exo1 and Exo2

The exogenous model based on the regional

temperature as the most important driver of long-term

fluctuations was proposed for intertidal soft-bottom

mussel beds in the Wadden Sea (Beukema et al., 2001;

Beukema & Dekker, 2014). A strong negative corre-

lation between mussel abundance and regional tem-

perature was observed there (but see Folmer et al.,

2014 who did not find this correlation): mussel

recruitment (in spring) was found to be higher after a

cold winter than after a mild one (Beukema et al.,

2001; Beukema & Dekker, 2014). The authors explain

it by the low abundance of predators or competitors

after severe winters.

In our study, the association between regional

temperature and mussel populations was clearly

different. The only significant non-lagged correlation

between mussel abundance and regional temperature

found for Vor2 was positive (Table 1). In addition, the

period of cyclic fluctuations in the regional tempera-

ture time series was usually shorter than the periods

revealed in the mussel population time series (4 years

vs. 5–9 years, respectively; Fig. 4).

Thus, we have not found any clear correspon-

dence between the changes in mussel populations

and the patterns predicted by this particular exoge-

nous model. At the same time, an indication of a

4-year periodic cycle was found at Vor5, pointing to

some correspondence between the periodicity of

mussel population dynamics and climatic changes.

Additionally, the long-term trends found in all

ecological time series (result #4) could be consid-

ered as a manifestation of a tendency common for all

the mussel beds (Exo1). The presence of long-term

trends in the temperature time series is in line with

this statement.

(3) Most our results (especially #1, 6, 7 and 8) are in

good agreement with the predictions of an

endogenous, deterministic model.
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As applied to mussels, endogenous models are

based on the negative effect of adults upon larvae and

juveniles (Naumov, 2006; Casagrandi et al., 2007). It

should be noted that there are also abundant data on

the positive effect of adult mussels upon recruits,

which tend to settle near adults (e.g. Commito et al.,

2014 and references therein). Nevertheless, the neg-

ative effect is well documented: field studies have

demonstrated negative correlations between abun-

dance of adults and juveniles (Khaitov, 2013), while

experiments have shed light on the inhibition mech-

anisms by competition (Okamura, 1986) or filtering

out of larvae (Lehane & Davenport, 2004; Dolmer &

Stenalt, 2010). We may, therefore, be fairly sure that

some negative feedback does exist. A seeming con-

tradiction with the data on positive interactions calls

for a special study. (At the same time, these two

mechanisms are not necessarily incompatible since

juveniles attracted by adults inevitably encounter face

stiff competition in their dense assemblages.) Whether

this negative feedback is powerful enough to drive

long-term changes can only be revealed by statistical

tests of a given time series.

If a population is regulated endogenously, the time

series should exhibit only two patterns of population

dynamics: (1) stability (equilibrium) and (2) cyclic

oscillations (Turchin & Taylor, 1992). Leaving aside

the issue of stability (since changes were statistically

significant, see GAM2 results), we will turn to the

consideration of the cyclic pattern. Its presence was

observed and statistically proven for all the mussel

beds in our study (finding #5, Fig. 4). Similar patterns

of changes in mussel populations were described in

other areas, where oscillations of biomass (Beukema

et al., 2010) and mussel cover (Folmer et al., 2014)

were revealed. Thus, the predictions of the endoge-

nous model (Endo3) agree well with our findings as

well as those of other authors.

Further, since biological interactions act at a

restricted spatial scale (Zajac et al., 1998), we should

expect that local mussel assemblages, if regulated

endogenously, should have uncoordinated patterns of

long-term changes. In fact, we revealed just this: the

periods of the regular cyclic fluctuations were clearly

different at different mussel beds (finding #1 and #6,

Figs. 3, 4). This observation is in good agreement with

Endo1.

The predictions of endogenous model are also

realized in the size structure dynamics (Fig. 1).

Negative feedback leads us to expect a periodical

emergence of settlements lacking juveniles (Fig. 1,

stage 2 and 3). Indeed, such ‘‘gerontocratic’’ stages,

reflected in the unimodal size distributions with the

dominance of large mussels, were found in the long-

term dynamics of all the mussel beds (Fig. 5 and

Appendix 2 in Supplementary material). As predicted

by the endogenous model (Endo4; Fig. 1, stages 1 and

4A), they alternated with stages characterized by the

bimodal distribution and with those characterized by

the unimodal juvenile-dominated one (Fig. 5; Appen-

dix 2 in Supplementary material). Neither of these two

findings is unusual. An ‘‘abnormal’’ population struc-

ture, dominated by the ‘‘rule by elders’’, has often been

recorded in mussel beds (Commito & Boncavage,

1989; Dankers et al., 2001; Commito et al., 2005).

Alternations similar to those found by us have been

described in the studies where size structure of mussel

beds was monitored for several years (Dankers et al.,

2001). All this suggests that the endogenous model,

well suited for the explanation of the long-term

dynamics of the mussel beds in our study, may also

be applicable to that in other areas.

One cannot rule out, however, that the cyclic nature

of the long-term dynamics results from the periodic

influence of some exogenous factors rather than the

density-dependent regulation. The best tool for rec-

ognizing the density-dependent basis of a time series is

the analysis of partial rate correlation function (PRCF,

Berryman & Turchin, 2001).

Since a high negative PRCF[1], testifying to direct,

first-order, negative feedbacks (Berryman & Turchin,

2001), is trivial and uninformative for detrended time

series that were used in our analysis, we will discuss

the PRCF of higher order. The time series generated

by multi-component systems are usually based on

delayed feedbacks, and thus, represent second- or

higher-order autoregressive processes (Berryman,

1992). These processes should be reflected in high

negative PRCF values for lag 2 or greater (Berryman,

1992; Berryman & Turchin, 2001). However, using

the Bartlett’s significant threshold, which is recom-

mended for PRCF analysis (Berryman & Turchin,

2001), we recognized the dominance of the first-order

feedback only. At the same time, the confidence

intervals revealed by bootstrapping of the time series

(Fig. 6) show that PRCF[2] is not equal to zero in the

case of all the mussel beds. Some higher-order

feedbacks are also present in the system (see the
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negative PRCF[3] for Vor2 and PRCF[4] for Vor4).

Thus, the system appears to be based on some delayed

feedbacks. An analysis of a longer time series might

yet reveal an even greater role of the delayed

regulatory feedbacks in dynamics of mussel beds.

It is now time to address the issue that an

endogenously regulated population should exhibit

stationary dynamics, in other words, that the popula-

tion parameters should oscillate around an unchange-

able mean (Turchin & Taylor, 1992). This was not the

case in our study (finding #4). All the mussel beds

contained some elements of long-term trends and the

time series were not perfectly stationary. Thus, Endo2

was not confirmed. This means that besides the density

dependence, the populations were influenced by some

other factor or factors (intrinsic or exogenous) unac-

counted for in the purely endogenous model.

For a start, let us address the possibility that

trending changes can be driven by some exogenous

factors. The best candidate for the role of such a driver

of the population dynamics trends is climate. Long-

term temperature dynamics in our study showed a

clear trend: the mean regional temperature increased

in the last decade (Fig. 3). At the same time, a

tendency towards an increase in the total mussel

abundance could be traced at all the mussel beds

(Fig. 3). This correspondence, however, seemed to be

delayed: the total mussel abundance was positively

correlated with the temperature in the previous years

(finding #3). We found that the mussel abundance

increased several years after warmer years and, vice

versa, decreased several years after colder ones.

The key to understanding the correlations observed

in our study may be the fact that, while the summer

temperature in the study region is rather stable, the

winter temperature is highly variable (Skazina et al.,

2013). Most of the changes in the annually averaged

temperature could be explained by the temperature of

cold periods. The lagged positive correlation could be

then interpreted as an increase in mussel abundance
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during periods following the years with mild winters.

There are no reliable data on the biological basis of

this phenomenon. To venture a guess, it may be

associated with the niche shifts of mussel recruits. It is

known that primary settlers usually avoid dense

assemblages of adult mussels, settling instead in other

biotopes, for example, on subtidal filamentous algae

near intertidal mussel beds (see Bayne, 1964). In fact,

we inspected some subtidal mussel beds in the study

area and all of them were carpeted with ephemeral

filamentous algae densely inhabited by mussel juve-

niles (our unpublished observations). We suppose that

existing intertidal mussel beds are colonized not by

primary settlers but by older juveniles, which can

redistribute from the areas of primary settlement into

mussel beds by crawling (see Hunt & Scheibling,

1998). This means that the success of recruitment at

intertidal mussel beds may depend on whether primary

settlers do well in their subtidal refuges. This, in turn,

may depend on the winter temperature: if the winter

was mild, more primary settlers survive their first year.

When, after 1–4 years spent in such refuges, these

juveniles finally obtain a ‘‘permanent position’’ at the

intertidal mussel beds, they provide the observed

increase in the mussel abundance. The growth of

subtidal filamentous algae seems to be positively

related with the temperature (Connell & Russell,

2010). If so, a high algal biomass in warmer years (i.e.

after mild winters) would be reflected in a higher

abundance of secondary recruits.

At the same time, there might still be a way to

explain the revealed trends without resorting to the

exogenous influences. This possibility is associated

with the fact that delayed feedbacks usually produce

cycles with much longer periods than direct (not

delayed) ones (Turchin, 2009). If delayed regulation is

present in the mussel population (and this is not to be

ruled out, see above), then the trends can be interpreted

as manifestations of cycles with longer periods, which

cannot be recognized because of the short observation

span. These ‘‘lingering’’ cycles may be driven by some

still unknown mechanisms. These hypothetical mech-

anisms, in turn, may arise from the presence of an

additional important element of the system (intra-

population or inter-specific interactions), which was

left out of this analysis.

To sum up, our results suggest that the models

describing the long-term dynamics of intertidal soft-

bottom mussel beds should take into account

endogenous regulations based on negative feedbacks.

These regulations are likely to produce regular long-

term cycles, ‘‘constant inconstancies’’ as Lukanin

et al. (1990) put in. At the same time, three limitations

should be explicitly considered.

Firstly, the features of long-term dynamics agreeing

with an endogenous model (cyclic changes, delayed

feedbacks, negative intra-population interactions etc.)

were revealed in a study of very special systems—

small intertidal mussel beds in an Arctic environment.

Paradoxically enough, their long-term existence is

possible only under very stable conditions, with severe

environmental impacts being smoothed by local

conditions. Otherwise they would perish fast, not to

be observed for decades. Intra-population interactions

in such a stable environment may be powerful enough

to drive cyclic changes. Large mussel beds in Euro-

pean and American soft bottom flats exist under more

unpredictable conditions and may be much more

sensitive to external impacts. Therefore, it is possible

that the patterns predicted by endogenous models

would not be recognizable in their dynamics.

Secondly, our sampling design entailed an assump-

tion that all parts of mussel bed had the same

population structure and the same dynamical proper-

ties as the central parts of large mussel patches that

were sampled. While we believe that this is true of

small mussel beds in the White Sea, this may not be so

in case of large heterogeneous mussel beds in other

seas. Moreover, since the negative impact of adults

upon juveniles (the basis of endogenous models) is

higher inside the dense patches than on their edges, the

intensity of negative feedbacks may depend on the

spatial heterogeneity of a mussel bed, with lower

feedbacks to be expected in more heterogeneous

assemblages. It would be interesting to compare the

dynamical properties (regular cycles presence, the

shape of PRCF and so on) of the mussel time series in

our study with those obtained under differ conditions

by other designs, though this is likely to turn out an

extremely challenging task.

Thirdly, regular oscillations of local mussel beds

may obviously be shifted by some exogenous impacts,

including climatic ones. They may also be combined

with the changes arising from other biological inter-

actions, both intra- and inter-specific. The complete

model should be prepared to incorporate these possi-

bilities. A more complex mathematical processing of

longer time series may then be needed.
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However that may be, we suppose that endogenous

regulation is a possibility to be seriously considered

when analysing long-term dynamics of mussel beds.

In our opinion, mussels can be invited to the club of

species with cyclic population dynamics, where they

would find themselves in the company of small

rodents and forest insects.
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